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Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Area
square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)
Flow rate
foot per second (ft/s) 0.3048 meter per second (m/s)
square foot per second (ft%/s) 0.0929 square meter per second (m2/s)
cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
Acceleration

foot per square second (ft/s?) 0.3048 meter per square second (m/s?)

International System of Units to U.S. customary units

Multiply By To obtain
Length
millimeter (mm) 0.03937 inch (in.)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as
°C=(°F-32)/1.8.

Datums

Vertical coordinate information is site specific and, in most cases, is referenced either to
as-built elevations on bridge plans (if available) or to a reference mark with an assumed
elevation of 100 feet established during the survey on or near the bridge deck. Other geographic
data (for example, lidar) are adjusted to match the bridge datum, unless otherwise noted.

Horizontal coordinate information is referenced to the World Geodetic System of 1984 (WGS 84).

Abbreviations

ADCP acoustic Doppler current profiler

ADOT&PF Alaska Department of Transportation and Public Facilities

AEP annual exceedance probability

EMA Expected Moments Algorithm

FERC Federal Energy Regulatory Commission

HEC-RAS Hydrologic Engineering Center River Analysis System (U.S. Army Corps of
Engineers)

IfSAR Interferometric synthetic aperture radar

lidar light detection and ranging

USGS U.S. Geological Survey



Streambed Scour Evaluations and Conditions at Selected
Bridge Sites in Alaska, 2013-15

By Robin A. Beebee, Karenth L. Dworsky, and Schyler J. Knopp

Abstract

Streambed scour potential was evaluated at 52 river- and
stream-spanning bridges in Alaska that lack a quantitative
scour analysis or have unknown foundation details. All
sites were evaluated for stream stability and long-term
scour potential. Contraction scour and abutment scour were
calculated for 52 bridges, and pier scour was calculated for
11 bridges that had piers. Vertical contraction (pressure flow)
scour was calculated for sites where the modeled water surface
was higher than the superstructure of the bridge. In most cases,
hydraulic models of the 1- and 0.2-percent annual exceedance
probability floods (also known as the 100- and 500-year
floods, respectively) were used to derive hydraulic variables
for the scour calculations. Alternate flood values were used in
scour calculations for sites where smaller floods overtopped
a bridge or where standard flood-frequency estimation
techniques did not apply. Scour also was calculated for large
recorded floods at 13 sites.

Channel instability at 11 sites was related to human
activities (in-channel mining, dredging, and channel
relocation). Eight of the dredged sites are located on
active unstable alluvial fans and were graded to protect
infrastructure. The trend toward aggradation during major
floods at these sites reduces confidence in scour estimates.

Vertical contraction and pressure flow occurred during
the 0.2-percent or smaller annual exceedance probability
floods at eight sites. Contraction scour exceeded 5 feet (ft) at
four sites, and total scour at piers (pier scour plus contraction
scour) exceeded 5 ft at four sites. Debris accumulation
increased calculated pier scour at six sites by an average of 2.4
ft. Total scour at abutments exceeded 5 ft at 10 sites. Scour
estimates seemed excessive at two piers where equations did
not account

for channel armoring, and at four abutments where failure
of the embankment and attendant channel widening would
reduce scour.

Introduction

Bridge foundations, including abutments and piers,
depend on being embedded a certain depth into the streambed
for stability. Scour refers to the removal of streambed material
beneath a bridge, generally by hydraulic stresses exerted on
the streambed and bridge foundation during floods (fig. 1).
Scour has the potential to damage bridges by undermining or
destabilizing the bridge foundation and is the leading cause of
bridge failure in the United States (Lagasse and others, 2012).
In 1998, the Federal Highway Administration established
a policy that all bridges be assessed for scour potential.

It is standard engineering practice for bridge engineers to
evaluate scour potential during the design process and to
plan foundations accordingly. However, a national inventory
of bridges and engineering plans indicated that numerous
bridges in Alaska lacked quantitative scour assessments and
(or) detailed foundation information needed to categorize the
vulnerability of the structure to damage or failure by scour.
Some of these bridges are old and plans may have been

lost, some were emergency replacements after floods, and
others were intended to be temporary structures. A hydraulic
assessment of streambed scour potential is needed in every
case. The Alaska Department of Transportation and Public
Facilities (ADOT&PF) intends to use these assessments to
prioritize sites with a high potential for streambed scour for
further investigation.
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Figure 1.

Scour is primarily a symptom of an undersized or
misaligned bridge, and its severity depends on the extent to
which a bridge is blocking natural flow paths during floods.
Other factors include the mobility of streambed material,
the magnitude of flood events that occur in the reach,
embankment stability, debris accumulation, channel stability,
and upstream sediment supply. Standard engineering methods
do not account for every riverine process that influences scour
(Conaway, 2007).

Purpose and Scope

This report describes methods and results of scour
investigations at 52 bridges with unknown foundations or
incomplete scour assessments and addresses geomorphic and
human factors that may influence scour but are not accounted
for in the calculations. Hydraulic models were developed and
scour calculations were completed for all bridges following

Example of streambed scour around a bridge foundation.

the guidance of Arneson and others (2012). Types of scour
addressed include channel-wide scour caused by contraction of
the channel width through the bridge, local scour around piers
and abutments, and larger-scale instability of the river reach.
The U.S. Geological Survey (USGS) has been studying
scour at bridges in Alaska since 1964 (Norman, 1975). In
cooperation with the ADOT&PF, the USGS began a phased
process in 1994 to provide hydraulic assessments of scour
for bridges throughout Alaska (Heinrichs and others, 2001;
Conaway, 2004; Conaway and Schauer, 2012; Beebee and
Schauer, 2015). This study follows the approach of Beebee
and Schauer (2015), using one-dimensional models and
site-specific information, but includes updated methods for
addressing unsteady flow, channel stability, flood frequency,
abutment scour, and scour at piers in coarse-bedded streams.
The 52 sites selected by ADOT&PF for scour
assessments are located throughout Alaska in different
geographic and hydrologic settings (table | and fig. 2).



Table 1.

Descriptions of selected bridge sites evaluated for scour in Alaska, 2013-15.

Introduction

[WGS 84: World Geodetic System of 1984. NBI Code 113: The National Bridge Scour Critical code for bridge. T, bridge over tidal waterways
with no scour analysis; U, bridge with unknown foundations and no scour analysis; 6, bridge with no scour analyses]

B::I?)ge Stream name Latitude Longitude Year NBI Bridge length
(fig. '2) (WGS 84) (WGS 84) built Code 113 (feet)
395 Alaganik Slough 60°26'48"N 145°12'46"W 1987 T 160
433 Barabara Creek 59°28'42"N 151°38'42"W 1968 18} 72
2213 Barney Creek 55°09' 00"N 162°25'48"W 2006 18] 100
1935 Bodenburg Creek 61°33'30"N 149°02'12"W 2002 U 39
588 Boulder Creek 63°26'48"N 145°51'06"W 1954 6 37
645 Campbell at Old Seward 61°10"12"N 149°52'18"W 1982 6 81
1140 Chicken Creek 64°04'48"N 141°57'30"W 1962 6 26
424 Chisana River 63°0024"N 141°48'12"W 1944 6 252
2282 Coffman Creek 55°59'31"N 132°52'19"W 2006 6 80
674 Cooper Creek 60°32'12"N 150°45'18"W 1955 6 68
1021 Crescent Creek 60°29'48"N 149°40'42"W 1959 U 56
2283 Dog Creek 56°00'08"N 132°49'34"W 2006 6 38
2279 Dog Creek Tidal 56°00'43"N 132°46'19"W 1995 6 60
1463 Falls Creek 55°42'30"N 132°36'48"W 1975 U 57
586 Flood Creek 63°26'42"N 145°48'0"W 1954 6 37
1899 Georges Creek 61°28'00"N 148°48'12"W 1997 U 32
1900 Georges Creek 61°28'06"N 148°48'06"W 1997 U 32
445 Good River 58°24'54"N 135°46'18"W 1984 6 76
1821 Grouse Creek 60°11'18"N 149°23'18"W 1988 6 37
578 Gunn Creek 63°10'12"N 145°31'42"W 1954 6 81
590 Gunny Sack Creek 63°29'18"N 145°5124"W 1954 6 47
2264 Harriet Hunt Creek 55°26'19"N 131°34'06"W 1961 6 53
3000 Hatchery Creek 55°5429"N 132°55'52"W 2003 6 120
2129 Hatchery Creek Tributary 55°44'31"N 132°5523"W 2006 6 93
844 Heney Creek 60°3124"N 145°46'54"W 1936 6 56
1253 Hunter Creek 61°27'06"N 148°48'0"W 1995 6 80
1685 Jordan Creek 58°23'12"N 134°39'54"W 1982 U 77
893 Kougarok River 65°26'06"N 164°39'42"W 1941 U 183
1713 Little Susitna River Braid 61°40'42"N 149°18'48"W 1974 6 41
1717 Log Jam Creek 55°54'18"N 133°0025"W 2003 6 96
580 McCallum Creek 63°14'18"N 145°38'54"W 1954 6 33
585 Michael Creek 63°26'06"N 145°46'48"W 1954 6 33
1669 Montana Creek 62°00'0"N 150°00'0"W 1988 U 202
1641 Nataga Creek 59°33'48"N 136°10'54"W 1984 U 48
1457 Newlunberry Creek 55°41'48"N 132°46'12"W 1975 18] 54
1018 North Fork Anchor River 59°46'42"N 151°49'0"W 1965 6 43
1409 Pats Creek 56°20'06"N 132°20'12"W 1973 U 104
1501 Peters Creek 61°24'42"N 149°31'48"W 1989 U 61
432 Sawmill Creek 57°03'6"N 135°13'48"W 1962 6 165
1098 Smith Creek 66°04'18"N 162°4324"W 1979 6 116
1199 South Fork Anchor River 59°42'06"N 151°37'54"W 1966 U 72
2138 Swiftwater Creek 61°39'00"N 149°3024"W 2004 18] 47
309 Taiya River 59°30'48"N 135°20'42"W 1946 U 205
463 Takotna River 62°58'06"N 156°0524"W 1941 U 255
462 Tatalina River 62°53'6"N 155°56"24"W 1947 6 61
584 Trims Creek 63°25'24"N 145°45'18"W 1954 U 37
1731 Trocodero Creek 55°24'16"N 132°49'33"W 1964 U 92
2281 Trumpeter Creek 55°58'59"N 132°52'19"W 2006 6 95
607 Victor Creek 60°21'30"N 149°20'54"W 1952 6 198
1490 West Creek 59°31'36"N 135°21'0"W 1992 U 163
587 Whistler Creek 63°26'12"N 145°50'30"W 1954 6 37
464 Yankee Creek 63°03'54"N 156°2024"W 1937 6 44
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Figure 2—Continued

Methods

Stream Stability and Geomorphic Assessment

Arneson and others (2012) recommended that a general
assessment of stream stability, aggradation, or degradation
following guidelines in Lagasse and others (2012) be done as
a first step in a scour assessment. Many streams in Alaska are
naturally unstable because of high gradient, large sediment
supply, lack of containment, or relatively frequent overbank
floods. Some also have been either destabilized or stabilized

by human activity, including dredging, in-stream mining, and
erosion control. These factors may influence the vulnerability
of structures and embankments to scour and erosion. The
general geomorphic setting of each stream channel was
determined using aerial photographs, light detection and
ranging (lidar), ADOT&PF bridge inspection reports, and
on-site assessments by USGS personnel. Stream stability was
classified qualitatively based on evidence of channel change,
active sediment sources, and human disturbance (excluding
the bridge).
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Since 1998, ADOT&PF has done biannual soundings
(depth-from-bridge measurements) on the upstream side of
bridges in conjunction with bridge inspections. The USGS
did soundings on the upstream and downstream sides of
bridges for this study. Because ADOT&PF inspectors and
the USGS personnel typically took depth measurements at
different locations along the bridge face and used slightly
different techniques, only the minimum bed elevation was
compared between surveys done by the different agencies. The
average change in minimum bed elevation between successive
soundings (1-2 years apart) was used to look for evidence of
channel aggradation or degradation, and the maximum change
from the highest minimum bed elevation and the lowest
minimum bed elevation was used to determine relative stream
stability. Divisions in relative stream stability categories were
based on natural breaks in the data. Stream size determines
changes in bed elevation to some extent (Lagasse and others,
2012). In order to compare different sized streams, elevation
changes were normalized by modeled 100-year channel width
at the bridge opening. Sites with less than +0.4 ft of relative
change per 10 ft of channel width between surveys were
considered stable, sites with greater than or equal to +0.4 ft
of change per 10 ft of channel width were considered less
stable, and sites with greater than or equal to +0.8 ft of change
in minimum bed elevation per 10 ft of channel width were
considered least stable.

Flood Frequency Calculations

It is standard engineering practice to design bridges
to safely withstand the hydraulic conditions encountered
during a large, rare flood, referred to as the design flood.
Scour at the bridge site also is calculated for an even larger
flood, known as the check flood or super flood. The design

flood and check flood typically are 1- and 0.2-percent annual
exceedance probability (AEP) floods (also referred to as
“100- and 500-year recurrence interval floods”), respectively
(Arneson and others, 2012). The AEP is the probability

that a select flow will be equaled or exceeded annually. For
example, a 0.01 AEP flow has a 1-percent chance of being
equaled or exceeded in any given year. Smaller AEP (higher
probability) floods also may be used as design floods or check
floods if they exceed the channel capacity and intersect the
superstructure of the bridge, causing pressure flow (Arneson
and others, 2012). Scour was calculated for the 1- and
0.2-percent AEP floods or pressure flow floods, based on
flood frequency calculations, with a few exceptions. The flood
magnitudes used in this report may differ from the original
design flood for the bridge.

Regional regression equations developed by Curran and
others (2016) were used to calculate the 1- and 0.2-percent
AEP floods. For sites with streamgages or crest-stage gages
at or near the bridge, PeakFQ version 7.0 software (Veilleux
and others, 2013) was used to do a modified Bulletin 17B
flood-frequency analysis (Interagency Advisory Committee
on Water Data, 1982). The modifications include the use of an
Expected Moments Algorithm (EMA) and a multiple Grubbs-
Beck test (Veilleux and others, 2013). The EMA allows more
flexibility in incorporating observations and floods outside
of the streamgage record. The multiple Grubbs-Beck test
identifies and disregards low peak flows that may substantially
influence the shape of the flood-frequency curve. The 1- and
0.2-percent AEP flows calculated for gaged sites with
the EMA analysis were then combined with the regional
regression analysis results to obtain a final weighted value
as described in Curran and others (2016). The regression
variables (drainage area and mean annual precipitation) used
for each site and gaged period of record are shown in table 2.

Table 2. Variables used in the flood frequency analysis for selected bridges in Alaska, 2013-15.

[Abbreviations and symbol: in., inch ; mi?, square mile; —, variables either are unavailable or are not used in flood frequency analysis]

Bridge Period of record for Drainage Mean annual
Streamgage Number L
No. Stream name peak streamflow area precipitation
- No. - of peaks - .
(fig. 2) analysis (mi?) (in.)
395 Alaganik Slough - - - 24.7 166
433 Barabara Creek 15238820 1972-92, 2002 21 20.6 71
2213 Barney Creek - - - 6.0 59
1935 Bodenburg Creek - - - 0.6 15
588 Boulder Creek - - - 3.5 47
645 Campbell at Old Seward 15274600 1200615 10 43.1 32
1140  Chicken Creek - - - 17.6 13
424  Chisana River 15470000 1950-71 22 2,960.0 16



Table 2. Variables used in the flood frequency analysis for selected bridges in Alaska, 2013—-15.—Continued

Bridge Period of record for Drainage Mean annual
No. Stream name Streamgage peak streamflow Number area precipitation
. No. . of peaks . :

(fig. 2) analysis (mi?) (in.)

2282 Coffman Creek - - - 4.8 94
674 Cooper Creek 15261000 1962-2012 23 49.3 62
1021 Crescent Creek 15254000 1950-83 34 31.6 56
2283 Dog Creek - - - 2.1 90
2279 Dog Creek Tidal - - - 3.0 87
1463 Falls Creek - - - 34 126
586 Flood Creek - - - 3.8 47
1900 Georges Creek - - - 3.9 23
1899 Georges Creek - - - 3.7 233
445 Good River - - - 33.2 66
1821 Grouse Creek 15237730 1998-2015 17 5.9 66
578 Gunn Creek - - - 50.6 29
590 Gunny Sack Creek - - - 4.6 51
2264 Harriet Hunt Creek - - - 3.0 156
3000 Hatchery Creek - - - 38.2 106
2129 Hatchery Creek Tributary - - - 1.8 110
844 Heney Creek - — — 1.5 200
1253 Hunter Creek - - - 69.3 41
1685 Jordan Creek - - - 1.1 88
893 Kougarok River - - - 53.5 15
1713 Little Susitna Braid 15290000 1949-2015 67 76.0 423
1717 Log Jam Creek - - - 37.5 102
580 McCallum Creek 15478050 1967-91 25 15.0 36
585 Michael Creek - - - 3.6 48
1669 Montana Creek 15292800 1963-72, 1986, 2005—15 20 157.3 34
1641 Nataga Creek - - - 32.8 76
1457 Newlunberry Creek - - - 0.8 69
1018 North Fork Anchor River - - - 29.7 29
1409 Pats Creek - - - 7.0 105
1501 Peters Creek 15277410 1974-95 22 86.9 108
432 Sawmill Creek 15088000 22002-15 13 38.7 198
1098  Smith Creek - - - 23.9 12
1199  South Fork Anchor River - - - 120.2 31
2138 Swiftwater Creek - - - 4.9 32
309 Taiya River 15056210 1967-2012 19 184.0 76
463 Takotna River - - - 242.7 19
462 Tatalina River 15303700 1987-2012 25 75.8 17
584 Trims Creek - - - 5.2 50
1731 Trocodero Creek - - - 5.0 146
2281 Trumpeter Creek - - - 15.8 109
607 Victor Creek - - - 13.0 102
1490 West Creek 15056200 1962-77 16 43.0 74
587 Whistler Creek - - - 3.0 35
464 Yankee Creek - - - 24.0 19

! Campbell Creek streamgage (downstream of bridge) also operated between 1978 and 1992. However, this was prior to much of the
urbanization of the basin, so these years were not used.

2 Sawmill Creek streamgage also operated from 1921 to 1957. This was prior to the construction of the Blue Lake Dam and peaks
measured after construction were significantly different.

Methods
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8 Streambed Scour Evaluations and Conditions at Selected Bridge Sites in Alaska, 2013-15

Field Surveys and Data Sources

In addition to flood flows, the basic data needed for a
scour evaluation using a one-dimensional model include:

1. Bridge geometry as measured in the field;

2. Channel and overbank geometry, including approach
and exit cross sections located outside the expansion
and contraction zone of the bridge and cross sections
immediately upstream and downstream of the bridge;

3. Water-surface slope for boundary conditions;

4. Bed-material size for determination of live-bed or clear-
water scour;

5. An estimate of the channel and flood plain Manning’s
roughness coefficients (n); and

6. A discharge measurement for model calibration.

7. Geometric, grain size, and Manning’s n data and sources
for each site are listed in table 3.

Stream Cross Sections and Bridge Geometry
Surveys

A datum point established at each site was used to
determine relative elevations of the channel cross sections and
bridge geometry. Streambed elevations were measured at the
upstream and downstream face of each bridge using either
sounding weights on cable reels, weighted measuring tapes, or
acoustic Doppler current profilers (ADCPs), depending on the
depth and current. Channel cross sections and water-surface
slopes were surveyed with either a total station or an optical
level with a stadia rod and range finder. ADCPs were used to
survey bathymetry where channels were too deep to wade.
Bridge-deck elevation and slope, low-chord elevation, bridge
width, and the location and dimensions of piers and footings
also were measured if construction plans were insufficient.
Overbank areas were sometimes either inaccessible or too
thickly vegetated to survey. In these cases, elevations derived
from lidar or USGS Digital Raster Graphic topographic maps
supplemented the data on overbank geometry. Where stream
gradients were low relative to errors in surveying, gradients
were measured from lidar or topographic maps.

Discharge Measurements for Calibration

USGS crews measured discharge at every site except
Chicken Creek Bridge 1140, which was dry at the time of the
visit, and Yankee Creek Bridge 464, where flow was blocked
by beaver dams. Discharge was measured with a current meter
or an ADCP, depending on the size of the stream. All discharge

measurements were obtained during low water conditions,
except at Taiya River Bridge 309 and West Creek Bridge 1490,
where discharge measurements were obtained during moderate
flow conditions.

Grain-Size Analysis

Grain-size distribution, which is needed to check for
live-bed or clear-water scour conditions and to calculate
clear-water scour, was determined at all gravel-bedded sites
using either a gravelometer or digital image analysis software
(Bergendahl and Arneson, 2014). At eight sites, both methods
were used. A sieve analysis was used for the four sand-bedded
sites. Streambed material at all sites was greater than the
0.2-mm median diameter grain-size (D, ) threshold for
cohesive behavior.

Hydraulic Model Development

The Hydrologic Engineering Center River Analysis
System version 5.03 (HEC-RAS) (Brunner, 2016) was used
to compute water-surface profiles and hydraulic variables
needed for scour equations. HEC-RAS is a one-dimensional
step-backwater model with steady- and unsteady-flow
components.

HEC-RAS requires a flow file and geometry file to
run. Steady-flow files include design floods and discharge
measurements for model calibration and boundary conditions.
Unsteady-flow files include a hydrograph for each flow and
a downstream boundary condition. All sites used normal
depth for the downstream boundary conditions for floods.
The water-surface slope that was surveyed at low water
initially was used as a downstream boundary condition. If
the simulated water-surface profile showed a downturn or
upturn at the downstream-most cross section, the slope was
adjusted within reasonable limits to better match the simulated
high-flow water-surface slopes. Subcritical, supercritical, or
mixed-flow regime modes can be modeled. Flow conditions
initially were assumed to be subcritical, but if HEC-RAS
identified critical flow at a cross section, an upstream normal
depth boundary condition was added to steady-flow models
and the model was re-run in a mixed-flow regime. Surveyed
water-surface elevations were compared to model simulation
results and used to validate or refine channel roughness values.

Geometry files included 46 cross sections, following
the suggestion in the HEC-RAS Hydraulic Reference Guide
(Brunner, 2016). For the 2013 and 2014 sites, the channel
elevations from the bridge soundings were used both for the
internal bridge cross sections and for the two cross sections
bounding the bridge, but the sections were shifted upstream
and downstream 5—15 ft in the model to allow for contraction
and expansion between the cross sections and the bridge and
elevations were adjusted to match the gradient of the reach.
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For the 2015 sites, additional cross sections upstream and
downstream of the bridge were surveyed, and the soundings
were only used for the internal bridge cross sections. The
approach and exit sections were located during the survey
outside the probable contraction and expansion zones
upstream and downstream of the bridge.

Channel roughness coefficients at the discharge
measurement sites were computed using Manning’s equation.
Roughness coefficient values for the overbanks were
determined using visual methods following Chow (1959) and
Hicks and Mason (1998). In most cases, measured discharge
was extremely low relative to flood discharges, and channel
roughness coefficients derived from Manning’s roughness
equation were unrepresentative of expected conditions. The
channel roughness coefficients also were estimated using
visual methods (Chow, 1959; Hicks and Mason, 1998).
Because Manning’s roughness coefficient can change with
flow, it was varied within a reasonable range to improve model
stability at the 1- and 0.2-percent AEP flows. Manning’s
roughness varied from cross section to cross section if there
were significant changes in overbank vegetation.

In most cases, geometry was compiled from survey data
and entered manually in HEC-RAS. However, where overbank
flow was significant, and water-surface profiles depended
on topographic detail in the flood plains, the geometry was
supplemented with overbank elevations from lidar data,
georeferenced topographic maps, or IfSAR (interferometric
synthetic aperture radar)-derived elevation data. Incorporating
overbank data from other sources is primarily helpful in
identifying preferential flow paths in complex flood plains
and determining where overflow of the bridge approaches
might occur.

Scour Calculations

Methods for calculating scour varied with site conditions.
Sediment transport conditions upstream of the bridge
determined whether live-bed or clear-water equations were
used. Pier-scour methods included both simple and complex
pier scour, depending on the geometry of the exposed pier, and
accounted for the effects of debris accumulations. Pier scour
is additive with contraction scour. A single abutment scour
method that incorporates contraction scour was used for all
sites to estimate total scour depth at each abutment.

Contraction Scour

Contraction scour can have horizontal and vertical
components. Horizontal contraction scour is caused by road
approach embankments and abutments in the flood plain or
main channel that intercept flow and direct it through the
bridge opening. Vertical contraction scour occurs when the
superstructure of the bridge (girders, deck, curb, and railing)
intercepts the water surface, creating pressure flow conditions.

Methods 13

In both cases, contraction scour occurs because, as flow
accelerates through a smaller cross section, velocity and shear
stress increase and transport streambed material downstream.
As scour deepens a channel, cross-sectional area increases
and shear stress and velocity decrease until scour reaches
equilibrium depth (also referred to as the depth of maximum
scour). Contraction scour is calculated and presented as a
uniform lowering of the streambed across the channel cross
section (fig. 3), but it rarely actually works that way because
some areas of the streambed are more erodible than other
areas, and flow is not evenly distributed across the channel.
Contraction scour is calculated differently depending on the
sediment transport properties of the approach channel, whether
pressure flow is present, and whether streambed material

is cohesive or non-cohesive. All methods assume that the
simulated flood lasts long enough to cause maximum scour,
and that the width of the contracted section remains constant
and only depth increases until equilibrium depth is reached. In
practice, erosion of embankments under a bridge often causes
the channel to widen and deepen during a flood.

Clear-Water Compared with Live-Bed Contraction Scour

Cohesionless contraction scour is calculated differently
depending on whether the approach channel is transporting
sediment into the bridge section (live-bed scour) or not
(clear-water scour). For live-bed conditions, maximum scour
depth is reached when sediment transported out of the bridge
section equals the sediment transported in from the approach
section. For clear-water conditions, maximum scour depth is
reached when the shear stress in the bridge section decreases
to the critical shear stress of the bed material in the section and
sediment transport ceases.

Live-bed or clear-water conditions for each simulated
flow were determined by using equation 1 to compare the
simulated velocity in the approach cross section with the
critical velocity necessary to transport the median grain size
(D). If the simulated velocity in the approach cross section
did not exceed the critical velocity needed to transport the
median grain size, then clear-water scour equations were
used. If the simulated velocity at the approach cross section
exceeded the critical velocity needed to transport the median
grain size, then live-bed equations were used to calculate
scour. If physical evidence of either live-bed or clear-water
conditions were observed in the field, these observations were
used to determine which equation to use. For instance, in some
cases, scour holes were evident in the field, but the applicable
equation predicted no scour. In cases of extreme backwater,
such as those that occur when flow reaches the superstructure
of the bridge, the velocity in the approach section will drop
below the critical velocity for sediment transport, and scour
will change from a live-bed to a clear-water condition at the
bridge (Arneson and others, 2012). This can cause conditions
at a site to change from live-bed to clear-water between the
design and check floods.
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Figure 3. Basic contraction scour conditions and variables defined in equations 1-3.
Vv, =11.17y"°Dg,"" (1)

V is the critical velocity above which D, grain size and smaller will be
transported, in feet per second;

is the average depth of flow upstream of the bridge, in feet; and

D is the median diameter of bed material, in feet.

Live-Bed Contraction Scour

Live-bed contraction scour is calculated using equation 2 (Arneson and others, 2012). The
equation depends on the ratios of discharge and width between the approach section and the
contracted section, as well as the depths in the approach section and contracted section. The
live-bed equation will only estimate scour if there is a decrease in width and (or) an increase
in discharge between the approach channel and the bridge section. Because it does not include
grain size, the live-bed equation may overestimate actual scour when the contracted section

is armored.
0.V (m Y}
&2 | )
ne [Qlj [Wj " v
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where
v, is the live-bed average contraction scour depth, in feet;
», is the average depth in the main channel of the approach section, in feet;
Yo is the average depth in the contracted section before scour, in feet;
0, is the discharge in the main channel of the approach section that is transporting

sediment, in cubic feet per second;

0, is the discharge in the contracted section (bridge), in cubic feet per second;

is the width of the main channel of the approach section that is transporting
sediment, in feet;

/4 is the width (less pier widths) of the of the main channel in the contracted
section (bridge) that is transporting sediment, in feet; and

is a coefficient determined by comparing shear velocity to the fall velocity of
the D, bed material (see Arneson and others, 2012, p 6.10), which varies
from 0.59 to 0.69.

Clear-Water Contraction Scour

If the velocity in the approach channel is less than the critical velocity for sediment
transport, Arneson and others (2012) recommended using the clear-water contraction scour
equation (eq. 3). The clear-water equation depends only on conditions in the contracted section,
and will calculate increasing scour for decreasing median sediment size. The clear-water
equation will overestimate scour when the approach section velocity is less than the critical
velocity, but the bridge section is narrow and deep, or when the bridge channel is armored with
gravel significantly larger than the median. The clear-water equation does not take into account
the relative widths of the approach channel and bridge section, so no physical contraction is
necessary to produce contraction scour.

3/7

0.00770*
Vs = 2/3 .2 =)o (3)
(1.25D5 )" W

where
¥, is the clear-water average contraction scour depth, in feet;
Y is the average depth in the contracted section before scour, in feet;
(0] is the discharge in the contracted section, in cubic feet per second,
W is the width (less pier widths) of the of the main channel in the contracted
section that is transporting sediment, in feet; and

Dy, is the median diameter of bed material, in feet.

Vertical Contraction Scour

When flow is intercepted by the superstructure of a bridge and, therefore, no longer has a
free surface, it undergoes vertical and horizontal contraction. These pressure flow conditions
produce additional forces on the streambed and greater stress on the bridge (fig. 4). New
bridges are designed with freeboard above the design scour floods to avoid vertical contraction,
but some existing bridges are undersized relative to flooding that has occurred since they
were designed and built. The 1- or 0.2-percent AEP (or historical) flows produced vertical
contraction conditions at eight of the study sites. Vertical contraction scour without overtopping
is calculated for live-bed and clear-water conditions using equations 4 and 5, respectively
(Arneson and others, 2012 and Shan and others, 2012). The equations are similar to those for
horizontal contraction scour, but include a term comparing the depth of flow upstream of the
bridge with the vertical opening of the bridge. The second term of both equations represents the
estimated thickness of the separation zone, or zone of no flow, that forms under the downstream
bridge superstructure (¢ in fig. 4). The separation zone further contracts the flow and increases
scour. Equations 4 and 5 assume that the flow depth upstream of the bridge is greater than the
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Figure 4. Example of vertical contraction scour and variables used to calculate scour.

flow depth under the bridge (thus vertical contraction occurs). At four sites, scour had already
occurred under the bridge, making the second term negative. For these sites, we assumed that
the unscoured channel elevation was equivalent to the channel elevation immediately upstream,
as with the illustration in figure 4, and adjusted the bridge opening height (kb) accordingly. One
site was overtopped and had weir flow over the deck of the bridge. Equation 6 describes clear-
water scour for overtopping situations, where separation zone thickness ¢ is calculated with an
additional term to account for the depth of flow over the bridge (eq. 6).

6 K B 02
Yy = {%J 7[KJ h, |+ O.S[W] hy |=hy, 4)

Ql 2 u
where

», is the live-bed average vertical contraction scour depth, in feet;

0, is the discharge in the main channel of the approach section that is transporting
sediment, in cubic feet per second,;

0, is the discharge in the contracted section, in cubic feet per second,

w, is the width of the main channel of the approach section that is transporting
sediment, in feet;

w, is the width (less pier widths) of the of the main channel in the contracted
section that is transporting sediment, in feet;

h, is the average depth in the upstream channel, in feet;

h, is the vertical size of the bridge opening (low chord to average bed elevation)
prior to scour, in feet; and

k, is a coefficient determined by comparing shear velocity to the fall velocity of
the D, bed material (see Arneson and others, 2012, p 6.10), which varies
from 0.59 to 0.69.

, 3/7 02
 =| 00070” |, OS[MJ |- ©
(1.25D5) 3, h,
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where
y, is the clear-water average vertical contraction scour depth, in feet;
0, is the discharge in the contracted section, in cubic feet per second;
w, is the width (less pier widths) of the of the main channel in the contracted
section, in feet;
D, is the median diameter of bed material, in feet;
h, is the vertical size of the bridge opening (low chord to average bed elevation)
prior to scour, in feet; and
h, is the average depth in the upstream channel, in feet.
37 02 01
| 0.00770,2 s Zeth=h) |, (=B -T)} " | (6)
s % ) h 2 ( h —h ) b b
(1.25Ds0)"3 W, u u
where
T is the height of the obstruction caused by the bridge superstructure, including
the girders, deck, and parapet, in feet.
Pier Scour

The undermining of bridge piers from scour is a major cause of bridge failure. During
floods, piers obstruct flow and cause water to pile up at the upstream end of the pier (fig. 5).
This creates horseshoe-shaped vortices that plunge downward around the nose of the pier,
scouring bed material from around the base. Scour continues until it reaches an equilibrium
depth where the vortices are no longer strong enough to move bed material, similar to
contraction scour. Arneson and others (2012) recommended use of equation 7 for most
conditions. Tables for each of the correction factors K| to K, are in Arneson and others (2012,
chap. 7). Pier scour depends primarily on flow depth immediately upstream of the pier, velocity
at the pier, and the width of the pier. Bridges with elongated piers or closely spaced multiple
columns are vulnerable to pier scour when the pier is not aligned with the flow direction. This
increases the obstruction to flow caused by the pier, similar to increasing the width of the pier.
An upper bound for scour depths at cylindrical or round-nosed piers aligned to flow is 2.4 times
the pier width (Arneson and others, 2012). Equation 7 does not include the wide pier correction
factor (K in Arneson and others, 2012) because no piers met the wide pier criteria, or the
effects of armoring by coarse bed material (formerly accounted for with the K, coefficient).

>-a
Pier stem
Water surface
\_/\/—\—
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Figure 5. Example of pier scour with variables used to calculate
scour.
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where

PN S R R i

0.65 v 0.43
Vs =20 K K> K (iJ L (7N
N N

is the pier scour depth, in feet;

is the correction factor for pier nose shape;

is the correction factor for angle of attack of flow;

1s the correction factor for bed condition;

is the flow depth directly upstream of the pier, in feet;

is the pier width, in feet;

is the mean velocity directly upstream of the pier, in feet per second; and
is the acceleration of gravity, 32.2 feet per square second.

Coarse-Bed Pier Scour

Equation 8 is for the special case of pier scour in clear-water conditions where the D
grain size is 20 mm or greater and the ratio of D, to D, is 1.5 or greater.

where

Cloc("\'m

D

84

Ve = 1.1K1K2a()‘62y10‘38 tanh H—ZIS (8)
1.97c

(8.1)

oD (8.2)

is the densimetric particle Froude number (eq. 8.1);

is the sediment specific gravity (assumed to be 2.65);

is the sediment gradation coefficient, must be 1.5 or greater (eq. 8.2); and
is the grain diameter of which 84 percent are smaller, in feet.

Pier Scour With Debris

When debris accumulates on piers, it obstructs flow and may direct flow downward,
resulting in additional scour. Arneson and others (2012) recommend doing a debris analysis
for bridges with piers and incorporating the effects of debris accumulations in the pier-scour
estimate. Of the 11 bridge sites with piers, 5 have noted debris accumulations in ADOT&PF
inspection reports, or had debris on the pier during field surveys. The size and shape
(rectangular or triangular) of the debris accumulation are the most important factors influencing
the hydraulics around piers with debris. A reasonable debris length, width, and shape for each
site were determined using ADOT&PF site inspection reports and photographs. Equation 9 was
then used to calculate an effective pier width (a”)) to replace a in equation 7 or 8.



Methods 19

« K (HW)+(y-KH)a
a, = »

)

where

is the effective width of a pier with debris present, in feet;

is the width of the pier, without debris, perpendicular to the flow, in feet;

is a debris shape factor (0.79 for rectangular debris and 0.21 for triangular
debris);

is the height, or thickness, of the debris, in feet;

is the width of debris perpendicular to the flow direction, in feet; and

is the depth of approach flow, in feet.

N og

<= I

Complex Pier Scour

Piers with footings that are exposed to streamflow undergo greater scour owing to
complex hydraulics around the footing and pile group (fig. 6). Footings are wider and longer
than the area of the pier designed to be in the flow, and when they are exposed to streamflow
they have greater hydraulic resistance to flow and can amplify local scour. Bridge 432 over
Sawmill Creek and Bridge 607 over Victor Creek have shallow footings, and the complex
pier-scour equations were used to evaluate total pier scour (eqs. 10—14). Complex piers are
broken down into a pier stem component, a footing component, and a pile group component,
which are added together to get total pier scour. Each component is calculated using the basic
pier-scour equation 7, with variables including pier width, depth, and velocity adjusted for each
component in a different way. The coefficients K|, K, and K, are determined the same way
as in equation 7. Pile cap scour is calculated differently depending on whether the pile cap is
above the streambed with an exposed pile group. The pile cap is expected to be undermined at
Victor Creek Bridge 607; thus, equation 12 is used to calculate pile cap scour and equation 14
is used to calculated pile group scour. Sawmill Creek Bridge 432 is on a footing with no piles;
thus, pile cap scour is calculated using equation 13. Many of the same variables are used in the
complex pier equations. Each variable is defined the first time it is used in equations 10—14.
Variables shown are applicable to the two sites with complex piers in this study. Slightly
different versions of the equations would be used for very wide piers or sand-bedded channels.

>-d .
pier
Pier stem
Water surface j\
M
apc f
V— y T< Footing
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Streambed 01 1S T Pile group

Figure 6. Example of complex pier-scour components and variables
used to calculate scour using equations 10-14.7.
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Total Complex Pier Scour

ys:yspier+yspc+yspg (10)

where
y,  is the complex pier-scour depth, in feet;
Yy pier 18 the pier-stem scour depth, in feet (eq. 11);
Y,  Isthepile cap or footing-scour depth, in feet (eq. 12 or 13); and
Vepe is the pile group scour depth, in feet (eq. 14).

Pier Stem Scour

4 0.65 V 0.43
=K ier | 2K KoK [) P’”j 1 (11)
e (131 N N

yspier
K, . =|0.4075-0.0669 o 0.4271—0.0778L N (11.1)
hpier a.. a.. a.
pier pier pier
h ’ h ’
+ 0.1615-0.0455—L || | | 0.0269-0.012—L— ||
apier apier apier apier
h=hy+T (11.2)

where
f s the distance between the front edge of the pile cap or footing and the pier, in
feet;
is the pier width, in feet;

h is the pile cap above the bed at the beginning of the calculation, in feet;

T is the thickness of the pile cap or footing, in feet;

k, is the correction factor for the pier nose shape;

k, is the correction factor for the angle of attack of flow;

k, is the correction factor for bed condition;

y is the approach flow depth at the beginning of the calculation, in feet;

V is the approach velocity used at the beginning of the calculation, in feet per
second; and

g s the acceleration of gravity, 32.2 feet per square second.

Pile Cap Scour (Case 1, Pile Cap above Streambed)

g% 06 V. 043
y2pc:y22KlK2K3[ pcj [ 2} (12)

2

ys ier
Yy =y + ; '--<y2 S3.5apc) (12.1)
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3
—2.705+0.51 ln[l)72.783[h—2] + ! "151
V2 Y2 Z

a*,. =a,e e’ (12.2)
v, =V, (&J (12.3)

Y2
hy =hy+2 e (12.4)

where
v,  is the adjusted depth of flow upstream of the pier, including contraction scour
and one-half of the pier stem scour, in feet (eq. 12.1);
a*pc is the adjusted pile cap width, in feet (eq. 12.2);
a, is the pile cap or footing width, in feet;
e is the natural logarithm base 2.71828...;
v, is the adjusted approach velocity approaching the pier, in feet per second
(eq. 12.3); and
h, is the adjusted height of the pile cap above the bed after pier scour, in feet
(eq. 12.4).

Pile Cap Scour (Case 2 Pile Cap on or below Streambed)

0.65 v 043
a,. -
Yspe = y/2K1K2K3( . J [—fJ (13)

vi) \Nevr

yf:hﬁ% (13.1)

ln[10.93 s +1j
84

In|10.93—2 41
3.5D,

V=V, (13.2)

where
In is the natural logarithm,
Y, is the distance from the bed to the top of the footing, after contraction scour
and half the pier stem scour, in feet; and
is the average velocity in the flow zone below the top of the footing, in feet per
second.

N
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Pile Group Scour for Case of Piles Aligned with Flow
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v, s the adjusted flow depth for pile group scour (eq. 14.1);
K is the pile group factor (eq. 14.2);

where

(14)

(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(14.6)

(14.7)

h, is the height of the pile group above the lowered streambed after pier and pile

cap scour have been computed in feet (eq. 14.3);
a* is the effective width of the pile group in feet (eq. 14.4);

is the adjusted velocity for pile group scour in feet per second (eq. 14.5);

is the number of aligned rows;

is the center to center distance between piles in feet;
is the diameter of each pile in feet; and

is the coefficient for pile spacing (eq. 14.7).

rg
V3
K, is the coefficient for number of aligned rows (eq. 14.6);
m
S
a
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Abutment Scour

Scour at bridge abutments is a common cause of bridge failure, but estimates of abutment
scour have been left out of past scour studies because the available equations produced scour
estimates that did not agree well with observed scour (Heinrich and others, 2001; Ettema and
others, 2010). A study by the National Cooperative Highway Research Program (NCHRP 24-20)
resulted in updated methods for estimating scour around abutments and a better understanding
of the hydraulics around abutments and approach embankments (Ettema and others, 2010).
These methods are now recommended in HEC-18 (Arneson and others, 2012). The NCHRP
24-20 methods treat abutment scour as a local concentration of contraction scour, rather than a
separate process. The contraction creates flow separation vortices adjacent to abutments when
they encroach on the active flow area (fig. 7; Ettema and others, 2010). The NCHRP 24-20 study
also concluded that abutment scour is limited by the geotechnical stability of the embankments,
which fail and fill in scour holes when they are undercut. Minor embankment failures are common
features of the bridge sites in this study, especially at the nine sites where the embankments were
not adequately protected by riprap according to the most recent ADOT&PF inspection report.
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Figure 7. Examples of abutment (A) scour plan and (B) cross-section views. Modified from Ettema and others (2010).
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All sites in this study resemble condition A, defined in NCHRP 24-20 as where the
abutment is located at or near the main channel. Equation 15 includes an estimate of contraction
scour and an amplification factor related to the relative concentration of flow under the bridge
for condition A. Arneson and others (2012) suggested using a live-bed equation to calculate
contraction scour for condition A, but critical velocity computations show that clear-water
contraction scour occurred at several sites. Equation 15 was used with the contraction scour
value calculated separately, whether live-bed, clear-water, or vertical contraction equations
were used. The amplification factor is determined using figure 8, which consists of empirically
derived curves relating relative contraction (¢./q,) as calculated in equation 16 to o, for
spill-through and wingwall type abutments. The amplification factor peaks for wingwall and
spill-through abutments at just under 1.8 and 1.7 when relative contraction is about 1.3 and 1.2,
respectively (fig. 8). The physical reason for this is that flow separation dominates the abutment
scour process at moderate contraction ratios, whereas contraction scour dominates at higher
contraction ratios. Thus, equation 15 will produce large abutment scour estimates for sites with
modest contraction and deep channels, regardless of other scour-limiting conditions such as
low velocities or bed armoring, or even if the floodwaters do not reach the abutments in the
hydraulic model. These cases are flagged as likely overestimates.

ys:(aAyc)_yO (15)

where

is the abutment scour depth, in feet;

is the amplification factor for live-bed conditions (fig. 8);

is the average flow depth at the bridge including contraction scour, in feet; and
is the flow depth at the bridge prior to scour, in feet.

9_2_% (16)

q, is the unit discharge at the approach cross section, in square feet per second;
g, isthe unit discharge at the bridge, in square feet per second,;

0, is the discharge at the bridge, in cubic feet per second;

Q,  isthe discharge at the approach section, in cubic feet per second,;

/4 is the flow top width at the bridge, in feet; and

is the flow top width at the approach section, in feet.

8=

= o

where
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Figure 8. Amplification factor (A) for live-bed abutment scour (g,/g,, relative
contraction) for wingwall (A) and (B) spill-through type abutments.
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Results of Flood Frequency and Scour
Assessments

Flood Frequency Estimates

Input variables and estimated frequencies for the 1- and
0.2-percent AEP floods are presented in tables 2 and 4. Table 4
also includes the measured site discharges used for model
calibration (labeled “discharge measurement”) and any large
measured floods that also were used to estimate scour. An
example of output from the weighted regression and EMA
analysis for Tatlina River is shown in figure 9.

10,000 Tatalina River flood frequency estimates

Streambed Scour Evaluations and Conditions at Selected Bridge Sites in Alaska, 2013-15

Observed Floods

A flood greater than the estimated 1-percent AEP flood
occurred at six of the bridge sites with nearby streamgages
during the period of record:

* Chisana River (424),

* Montana Creek (1669),

e Peters Creek 1501,

+ Taiya River (309),

+ Tatalina River (462), and
* West Creek (1490).

These bridges were in place at all sites except Montana Creek
and West Creek. Hunter Creek did not have a streamgage
during the flood of record in 1995, but the bridge in place at
the time failed from abutment scour, as did a bridge upstream
of Bridge 1501 on Peters Creek.
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Figure 9.

Flood frequency curves used to calculate the weighted 1- and 0.2-percent annual exceedance probability

floods, with 5- and 95-percent confidence intervals for each analysis and measured peak flows at Tatalina River near

Takotna, Alaska.



Results of Flood Frequency and Scour Assessments

Table 4. Discharges used to estimate scour at selected bridge sites in Alaska.

27

[All discharge values are in cubic feet per second. Abbreviation and symbol: ft*/s, cubic foot per second; —, variables that were not used in analysis for that site]

Annual exceedance

Bridge . ... Year of .
Nos.l Stream name Discharge probability discharge Additional 4 ;cional floog Bridge in place
. measurement discharge - during flood?

(fig. 2) 1-percent 0.2-percent discharge
395  Alaganik Slough 474 5,920 7,310 - - -
433  Barabara Creek 56 2,680 3,640 2,050 1983 Yes

2213  Barney Creek 24 960 1,270 - - -
1935  Bodenburg Creek! 38 62 91 11,500 — —
588  Boulder Creek 808 540 730 - - -
645  Campbell at Old Seward 48 2,190 2,940 - - -
1140  Chicken Creek 0 660 920 - - -
424  Chisana River 1,970 12,700 15,000 14,500 1997 Yes
2282  Coffman Creek 2.2 1,150 1,510 - - —
674  Cooper Creek 41 1,390 2,190 1,230 2003 Yes
1021  Crescent Creek 105 1,640 2,640 1,500 1969 Yes
2283  Dog Creek 0.3 620 820 - - -
2279  Dog Creek Tidal 1 770 1,020 - - -
1463  Falls Creek 7.9 1,130 1,460 - - -
586  Flood Creek 35 560 780 - - -
1900  Georges Creek 4.4 340 470 - - -
1899  Georges Creek 10 330 460 - - -
445  Good River 11 3,640 4,650 - - —
1821  Grouse Creek 16 1,350 1,960 1,160 2012 Yes
578  Gunn Creek 262 2,640 3,460 - - -
590  Gunny Sack Creek 65 700 950 - - -
2264  Harriet Hunt Creek 14.1 1,190 1,540 - - -
3000 Hatchery Creek 62 5,790 7,220 - — -
2129  Hatchery Creek Tributary 1.6 640 850 - - -
844  Heney Creek 30 870 1,130 - - -
1253  Hunter Creek 1,536 4,330 5,560 - - -
1685  Jordan Creek 4.4 380 500 - - -
893  Kougarok River 39 1,660 2,240 - - —
1713  Little Susitna River Braid? 78 6,840 9,370 25,450 - -
1717  Log Jam Creek 202 5,540 6,930 - - -
580  McCallum Creek 202 1,280 1,710 1,010 1967 Yes
585  Michael Creek 23 560 760 - - -
1669  Montana Creek 1,026 13,500 18,200 15,300 1987 No
1641  Nataga Creek 116 4,010 5,100 - - —
1457  Newlunberry Creek 1.8 330 450 - - -
1018  North Fork Anchor River 127 1,790 2,370 - - —
1409  Pats Creek 31 1,700 2,190 - - -
1501  Peters Creek 243 4870 7,130 5,000 1995 Yes
432  Sawmill Creek 895 15,440 15,720 11,500 2005 -
1098  Smith Creek 15 780 1,080 - - -
1199  South Fork Anchor River 86 5,230 6,730 - - -
2138  Swiftwater Creek 15 520 700 - - -
309  Taiya River 3,756 22,000 28,100 25,000 1967 Yes
463  Takotna River 733 6,020 7,800 - - —
462  Tatalina River 60 1,170 1,210 1,170 1998 Yes
584  Trims Creek 43 760 1,010 - - -
1731  Trocodero Creek 32 1,680 2,150 - - -
2281  Trumpeter Creek 73 3,090 3,930 - - —
607  Victor Creek 141 2,550 3,260 - - -
1490  West Creek 967 7,500 9,670 9,800 1967 No
587  Whistler Creek 20 390 530 - - -
464  Yankee Creek 0 1,110 1,500 - - —

"Bodenburg Creek is a groundwater-fed stream with very little drainage area, and thus very low predicted floods. See report body text for discussion of
overflow flooding.

2Little Susitna River Braid is a short distributary channel of the main Little Susitna River. See report body text for discussion of how the design flood was

determined.



28 Streambed Scour Evaluations and Conditions at Selected Bridge Sites in Alaska, 2013-15

Design Floods Other than the 1- and 0.2-Percent
Annual Exceedance Probability and Flood
Frequency Estimates for Regulated Streams

The design and check floods typically are 1- and
0.2-percent AEP floods, respectively (Arneson and others,
2012). For Little Susitna River Bridge 1713 and Bodenburg
Creek Bridge 1935, alternative flood values listed in the
“Additional discharge” column of table 4 were used as either
the design or check floods. Flood frequency analyses for
Cooper Creek Bridge 674 and Sawmill Creek Bridge 432
accounted for site-specific regulation scenarios (table 4).

Little Susitna River Bridge 1713

Bridge 1713 crosses a sub-channel of the braided Little
Susitna River several miles below where the channels diverge.
The modeled 1-percent and 0.2-percent AEP floods (6,840
and 9,370 ft¥/s, respectively) on the Little Susitna River at
Bridge 1713 both substantially overtop the bridge and channel
banks. An unknown portion of these flows would occupy
other channels in the braid plain. Scour was assessed using the
modeled flow that forced the maximum discharge underneath
the bridge and created the maximum velocity through the
bridge opening. This flow was determined to be 5,450 ft*/s
through iterative modeling with a 250 ft’/s flow interval. It is
unlikely that this great of a proportion of flow would find its
way to Bridge 1713, but there is evidence of channel change
and flow redistribution elsewhere along the Little Susitna
River. Additionally, flows greater than 7,000 ft*/s have been
measured twice upstream.

Bodenburg Creek Bridge 1935

Bodenburg Creek is a mostly groundwater-fed stream
that occupies and abandoned channel linking the Matanuska
and Knik Rivers near Palmer, Alaska (fig. 10). It has a
small drainage area and estimated 1-percent and 0.2-percent
AEP flows of 62 and 91 ft/s, respectively, although these
flows do not include groundwater. However, because of its
position on a historical floodplain between two larger rivers,
Bodenburg Creek historically has carried much more flow. In
August 1971, the Matanuska River breached the Old Glenn
Highway and followed Bodenburg Creek to the Knik River.
The flow spread significantly, but Lamke (1972) estimated
that 1,000 ft*/s reached the Knik River at the peak from
observations and discharge measurement notes. As of 2017,
the Matanuska River is eroding the Old Glenn Highway again,

so there is a potential for overflow during a flood. Bridge 1935
is located at a relatively narrow part of that flood path (fig. 10),
and there is no easy way to constrain the overflow that

could go under the bridge. As with Bridge 1713, an iterative
approach was used to determine the maximum pressure flow
discharge of 1,500 ft*/s.

Regulated Streams

Two sites, Bridge 674 on Cooper Creek and Bridge 432
on Sawmill Creek, are located downstream of hydroelectric
dams that regulate river flow. The dam on Cooper Lake
upstream of Bridge 674 captures all inflow to the lake and
diverts it through a tunnel to Kenai Lake. The lake level is
regulated to avoid spill over the spillway, and no spill has
occurred (other than testing of the spillway) since the dam was
completed in 1962 (Chugach Electric Association, 2005). The
flood frequency analysis assumed that the basin upstream of
the lake outlet would not contribute to floods downstream at
the bridge. The regression analysis used the basin downstream
of the lake outlet to calculate flood frequency, and the EMA
analysis used the post-dam peak flows recorded at USGS
streamgage 15261000 near Bridge 674.

Sawmill Creek below Blue Lake Dam is a more
complicated case. The Blue Lake Hydroelectric Dam was
built between 1958 and 1961, and was expanded in 2012.
Blue Lake spills annually during high-flow periods. Stream
gaging records from 1921 to 1957, before the dam was built,
show a different flood regime than those after the dam was
built. The highest measured pre-dam flood was 7,100 ft*/s.
The highest measured post-dam flood was 11,500 ft*/s in
2005. Two floods estimated to be 12,000 ft/s in 1972 and
1993 are reported in Federal Energy Regulatory Commission
(FERC) licensing documents (City and Borough of Sitka
Electric Department, 2010). An EMA analysis for the pre-
and post-dam periods show significantly different results
(fig. 11). The 1-percent AEP flood varies from 8,700 ft*/s using
pre-dam peak flows to 16,990 ft*/s using post-dam peak flows.
However, the maximum spillway capacity at Blue Lake Dam
is 14,000 ft*/s and the FERC licensing documents suggest that
the dam is operated in order to regulate spill during floods
(City and Borough of Sitka Electric Department, 2010). The
1- and 0.2-percent AEP floods used in this analysis consist
of the 14,000 ft*/s maximum spillway flood added to the
maximum powerhouse output of 520 ft*/s, and the respective
regression-analysis-derived flood numbers for the drainage
basin below Blue Lake.
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Sawmill Creek pre- and post-dam frequency comparison
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Figure 11.

Stream Stability and Geomorphic Assessment

Stream stability at the reach scale was assessed
using geomorphic observations and sounding records
(table 5, fig. 12). With the exception of bedrock-dominated
Newlunberry Creek Bridge 1457, all sites are at least partially
alluvial with streambeds and banks composed of sediment,
and thus have the potential to shift, erode, or aggrade if
disturbed. However, most of the sites are classified as stable or
moderately stable, with little evidence of reach-scale channel
change, significant sediment sources, or human disturbance
beyond road embankments or bank stabilization. Moderately
unstable sites showed evidence of active sediment sources
and natural channel change. Unstable sites—which have
active sediment source areas, evidence of channel change, and
human disturbance—include 10 sites on active alluvial fan
landforms, 1 site with an active tributary fan just upstream
of the bridge, 1 site with active in-channel mining, and 1 site
with a shifting tributary confluence just upstream of the

Flood frequency curves for the pre- and post-dam periods at Sawmill Creek near Sitka, Alaska.

bridge. Most sites have more than 10 years of sounding data,
whereas 9 of the 52 sites have 5 or fewer years of sounding
data. All of these nine sites are classified as stable based on the
short available record, and most of them are in geomorphically
stable settings; however the short record reduces confidence in
the results.

Evidence for geomorphic or anthropogenic instability did
not always correspond to variation in streambed elevations
in the sounding record. However, of the 10 least stable sites
from the sounding record, 8 sites were on active alluvial fans
with evidence of significant geomorphic instability, and 1 site
was actively mined. Three additional alluvial fan sites were
classified as “less stable” (figs. 12 and 13). Where channel
geometry is unstable, scour evaluations (which rely on a
model of the static channel) have a larger margin of error
than those for stable channels. Instability also can contribute
to scour by increasing the flow angle of attack on piers and
abutments and redirecting flow to road approaches.
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Figure 12. Sounding-based stream stability at 52 river- and stream-spanning bridges in Alaska.

Soundings did not show definitive signs of either sounding records are less likely to capture long-term trends
long-term aggradation or degradation at any study sites, or responses to infrequent flood events. All measured cross
although evidence for degradation at Victor Creek is presented  sections for study sites are in appendix 1.
in section, “Unstable Sites—Victor Creek Bridge 607.” The
average change in minimum bed elevation between successive
soundings was less than or equal to 0.5 ft at all sites. Most
sites had 0.1 ft or less cumulative change. However, numerous
sites on alluvial fans showed evidence of dredging, which

Unstable Sites

Alluvial Fan Channels along the Richardson Highway

typically is done to combat aggradation and would prevent SCV?H of the 52 sites in this' study are located on outwash
aggradation from appearing in the sounding record. fans of tributaries to the Delta River:
Repeat cross-section soundings are useful in identifying + McCallum Creek Bridge 580,

instabilities but cannot be used to rule out vulnerability to . .
scour or other responses to flooding. Scour and fill often are Tr?ms Creek Brldge 284,
short-lived and are evident only during and shortly after a * Michael Creek Bridge 585,
flood (Conaway, 2007). Soundings taken at 2-year intervals, « Flood Creek Bridge 586,
even if a flood occurs between soundings, may not indicate . . .

the transient effects of the flood on the channel cross section. Whistler Creek Br'1dge 587,
Some bridges have only 35 years of soundings. Short * Boulder Creek Bridge 588, and

* Gunny Sack Creek Bridge 590.
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Figure 13. "Less stable” alluvial fans at (A) Gunny Sack Creek Bridge 590 and (B) Whistler
Creek upstream of Bridge 587, Alaska.



The Richardson Highway crosses these fans near the upper

or middle part of the depositional area. The Trans-Alaska
Pipeline crosses underneath each stream about 500 ft
downstream of the highway. All these channels are
geomorphically unstable, and instability is reflected in the
sounding record for all but McCallum Creek. All these streams
are relatively steep and high velocity, and are composed of
cobble and boulder beds (fig. 13). Boulder weirs are used to
prevent trenching at the pipeline crossing, and guidebanks

or simple berms are used to stabilize channels at the bridge.
The risk of catastrophic contraction or abutment scour at
these sites is minimized by high sedimentation rates, grade
control downstream, and armoring in the bridge channel. The
most common problems are fill loss around the abutment
wingwalls, which are steep and subject to high velocities and
contraction-related flow separation during floods. Aggradation
during a flood also could lead to overtopping of the road
approaches and more rapid abutment loss.

Chicken Creek Bridge 1140

Chicken Creek Bridge 1140 is perennially destabilized by
dredge mining and in-stream grading to combat aggradation
caused by floods. If the channel is lowered downstream, this
instability could lead to scour. However, the dominant regime
at Chicken Creek seems to be aggradation.

Victor Creek Bridge 607

Victor Creek Bridge 607 seems to be degrading based on
visual inspection, according to 1952 as-built plans (hereinafter
referred to as “as-builts”), and soundings since 1999. The
as-builts show a low streambed of 475 ft. The first sounding
record available in 1999 shows a low streambed of 467.6 ft.
After a regional flood in 2006 (Victor Creek is ungaged), the
minimum streambed dropped to 464.5 ft, and as of 2015 had
increased to 465.6 ft. Although the visible streambed is mostly
cobbles, gravel, and boulders, as-builts indicate that at an
elevation of 465 ft and below the streambed is composed of
firm gravelly silt that probably has some cohesive properties.
The footing is exposed to flow and significantly affects
pier-scour estimates. In addition to channel degradation,
ADOT&PF has noted bank erosion in most inspection reports.
Scour at the site has either reached an equilibrium since the
bridge was built, or armoring and cohesive properties of the
firm gravel noted in the as-builts have limited degradation
below an elevation of 465 ft.

Nataga Creek Bridge 1641

Bridge 1641 crosses Nataga Creek on an alluvial fan
about 200 ft upstream of the confluence with the Kelsall River.
Nataga is a steep, cobble-bedded creek flowing through a

Scour Calculations 39

200-ft-wide braidplain. The active channel moved from the

far left side of the braidplain to the far right side between

July and October 2013. Fresh debris in 2014 indicated that

the stream had moved across the braidplain recently again.
Soundings indicate more than 5 ft of vertical change in the low
streambed, which is significant given that there is, on average,
less than 10 ft of vertical distance between the low chord and
the stream bed. The instability at Nataga Creek likely will
continue and may lead to abutment or approach road loss.

Heney Creek Bridge 844

Heney Creek Bridge 844 does not appear to be
geomorphically unstable or destabilized by human activity.
However, the sounding record shows changes in bed elevation.
Inspection photographs show a large gravel bar upstream of
the bridge, and the main channel occupying either side or the
middle of the gravel bar in different years. In 2015, the main
channel was split into two channels with the gravel bar in the
middle, and the two channels met at the sounding location.
The instability seen in the repeat soundings may relate to the
upstream channel shifting around the gravel bar and is not
indicative of a reach-scale problem.

Scour Calculations

Contraction, Abutment, and Pier Scour

Clear-water and live-bed scour estimates for 49 sites
with horizontal contraction scour at the design and (or) check
floods where the water surface did not reach the low chord of
the bridge are shown in table 6. These estimates range from
no scour to a maximum of 3.7 ft, and are split about evenly
between live-bed and clear-water conditions, although both
estimates are shown for each site. Vertical contraction scour
is predictably higher, as much as 8.0 ft for the design and (or)
check floods at eight bridges where the water surface reaches
the low chord (table 7). Abutment scour, which is treated as an
amplification of contraction scour, ranges from 0.3 to 13.1 ft
(table 8).

Pier scour and total scour at piers (pier scour plus
contraction scour) are listed in table 9 for eleven bridges with
simple piers, in table 10 for two bridges with complex exposed
foundations, and in table 11 for three bridges with coarse beds
and clear-water conditions. Pier scour ranged from 0.1 to
8.9 ft, before adding contraction scour. Pier scour with debris
was calculated for five bridges with debris accumulation noted
in site visits. Debris increased pier scour by an average of
2.5 ft. All scour estimates (contraction, abutment, and pier) for
each bridge are summarized in table 12.
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Bridges with High Scour Estimates

Five feet is considered the threshold for “substantial
scour”, although the influence of scour on the bridge structure
ultimately depends on the depth of the bridge foundations.
Those bridges coded as U in table 1 are founded on piles
of unknown depth; thus, these numbers may be used to
prioritize bridge for pile-depth testing. Only 9 of the 52 sites
have substantial scour estimates at the design flood or largest
measured flood, and four additional sites have substantial
scour estimates for the check flood. These and other bridges of
concern are described individually.

Alaganik Slough Bridge 395

Pier scour of 11.3—11.4 ft is the primary concern at
Alaganik Slough Bridge 395. A 2002 underwater inspection
noted scour holes 1.5—4 ft deep around the pilings, and scour
near the left abutment. Debris accumulations, noted in every
inspection report, increase estimated pier scour by more
than 4 ft. Photographs show debris on the upstream pile and
wedged between piles, as well as on the streambed near the
bridge. The sounding record shows a change in low streambed
elevation of 3.5 ft between 1998 and 2008, indicating that the
streambed is readily scoured.

Bodenburg Creek Bridge 1935

The check flood for Bodenburg Creek is based on
overflow from the Matanuska River filling the channel to
capacity at Bridge 1935. This flow of 1,500 ft*/s would scour
the channel an estimated 3.9 ft, with 8.8 ft of scour at the
abutments. The 1-and 0.2-percent AEP floods derived from the
surface drainage basin of Bodenburg Creek are estimated to
cause very minor scour.

Chisana River Bridge 424

Chisana River at Bridge 424 is a low-gradient
meandering river with a mobile sand and fine gravel bed.
The 252-ft bridge easily accommodates the estimated 1- and
0.2-percent AEP floods, and had a 14,500 ft*/s flood in
1997 (similar to the 0.2-percent AEP flood of 15,000 ft'/s).
Soundings show a change in low bed elevation of 3.1 ft.
Estimated abutment scour of 6.4—7.5 ft during floods does
not seem excessive for this large of a channel; however, the
modeled water surface does not extend all the way across the
bridge opening, so only one abutment is likely to be scoured in
a given flood.

Crescent Creek Bridge 1021

Crescent Creek has an estimated pier scour of 6.0-6.9 ft,
with an accumulation of debris and accounting for channel
armoring with the coarse bed equation. With contraction
scour, this increases to 8.3—8.6 ft. This seems excessive for
a small stream with no evidence of pier or contraction scour
in soundings or post-flood reports. The bridge survived a
flood in 1969 that was greater than the 1-percent AEP flood,
with a predicted scour of 8.3 ft at piers. One-dimensional
modeling may not adequately capture the flow distribution at
Crescent Creek, which is perched on an inactive alluvial fan
with one side of the floodplain sloping away from the channel
for several miles. The fluvial geomorphology of this reach
suggests some flood flow would be expected to escape the
channel and cross the approach road. Crescent Creek Bridge
1021 may be a good candidate for pile-depth testing, more
frequent monitoring, or two-dimensional modeling.

Grouse Creek Bridge 1821

Grouse Creek Bridge 1821 is a small bridge with vertical
sheet pile cell abutments spanning a mobile-bedded stream.
Bridge 1821 is undersized, and has vertical contraction at the
1- and 0.2-percent AEP flows, and weir flow at the 0.2-percent
AEP flow. Contraction scour of 4.8 ft and abutment scour
of 7.4 ft are estimated for the 1-percent AEP flood. Even at
low flow, the water surface is against both abutments, and
inspection reports note that the abutments are not protected

by riprap.

Little Susitna River Braid Bridge 1713

Bridge 1713, built in 2011, spans a sub-channel of
the Little Susitna River in a braided reach. An indefinite
proportion of the estimated 1- and 0.2-percent AEP floods
would enter this channel, so a “maximum pressure flow” was
determined that would fill the channel to capacity without
losing substantial flow to the road approach. This flow is
5,450 ft*/s, compared to 7,740 ft*/s measured in 2012 at an
upstream streamgage, with estimates of 7,290 and 10,300 ft*/s
for the 1- and 0.2-percent AEP floods, respectively. Estimated
vertical contraction and abutment scour for a 5,450 ft’/s flow
are 5.8 and 13.1 ft, respectively. Low water measurements
in 2013 showed that the streambed below the bridge was
about 3.5 ft lower than the uncontracted channel upstream
and downstream, indicating that significant scour had already
occurred. Because the bridge is new and 20 ft longer than the
original bridge, the sounding record is too short to derive any
conclusions about stability.



Logjam Creek Bridge 1717

Estimated abutment scour is high at Logjam Creek
(4.8-5 ft), but other evidence suggests that the actual risk
of scour is low. The channel is mixed bedrock and alluvial,
with bedrock underneath the right abutment. The channel
is moderately contracted and the approach flow is deep,
two factors that greatly increase the live-bed amplification
factor in the abutment scour equation, but do not necessarily
increase scour, especially in a coarse-bedded, relatively
low-gradient channel.

North Fork Anchor River Bridge 1018

Estimated abutment scour at North Fork Anchor River
also is high, at 4.7—6.3 ft, although in this case it may be an
underestimate. Hydraulic conditions (including a contracted
bridge opening with vertical abutments and a sharp bend in
the river approaching the bridge) are conducive to scour. A
5-ft-deep scour hole was noted in a 2005 inspection at the
right abutment toe, and inspection reports consistently note
failure of the embankments and gabions placed to protect
the abutments. A 90-degree bend in the channel approaching
the bridge exposes the right abutment to increased
hydraulic forces and flow separation unaccounted for in the
one-dimensional model.

Sawmill Creek Bridge 432

Sawmill Creek Bridge 432 is located in a complicated
setting. The bridge is highly skewed to the flow direction,
reducing its capacity. The channel immediately upstream of
the bridge has been extensively modified to accommodate
a powerplant outfall. The 1- and 0.2-percent AEP floods
and the largest flood on record in 2005 all reach the bridge
superstructure. Estimated abutment scour ranges from 3.3 to
5.4 ft. Pier-scour estimates exceed 8 ft for the complex piers
with exposed footings; however, the footings are founded on
bedrock 2.8 ft below the current streambed so that pier scour
is limited to 2.8 ft. Additionally, the left abutment is founded
on bedrock, so only the channel to the right of the pier and the
right abutment are subject to scour. A design engineer working
on the powerplant observed aggradation of several feet
following floods from tributary debris flows down the steep
valley walls upstream (Dean Orbison, City of Sitka [retired],
oral commun., August 27, 2015).

South Fork Anchor River Bridge 1199

The 0.2-percent AEP flood at South Fork Anchor River
reaches the superstructure of the bridge and creates vertical
contraction scour of 5.9 ft and abutment scour of 7.3 ft. The
1-percent AEP flood is estimated to produce minor scour. The
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channel underneath Bridge 1199 was 2.5 ft lower than the
upstream cross section and 2 ft lower than the downstream
cross section during the field visit, indicating that contraction
scour has occurred; thus, the 1-percent AEP flood estimate
of 0.6 ft probably is too low. This could be because live-bed
or mixed conditions are present at lower flows rather than
the clear-water conditions calculated. Live-bed scour for

the 1-percent AEP flood was 5.5 ft compared to 0.6 ft for
clear-water.

Taiya River Bridge 309

Taiya River Bridge 309 fills to the low chord at the check
flood, and nearly so at the design flood. The 4.0-6.2 ft of
contraction scour and 5.5-8.2 ft of abutment scour predicted
for the 1967 flood and 1-percent AEP flows are reasonable
given the contraction caused by the bridge and the historical
elevation changes of 6 ft in the channel bed noted in the
sounding record. Taiya River is a relatively large river with a
mobile bed.

Victor Creek Bridge 607

Pier scour at Victor Creek was calculated with the
complex pier-scour equation and the coarse bed pier-scour
equation. The complex pier-scour equation accounts for
increased flow resistance caused by the exposure of the wide
footing, but does not account for armoring. The coarse bed
pier-scour equation accounts for armoring, and accounts
for the width of the footing by using the full width of the
footing as the pier width. Scour computed using the complex
pier-scour equation was nearly 9 ft (with contraction scour,
9.6-10.2 ft), whereas scour computed coarse bed pier-scour
equation with a footing-width pier was 1.8-2.4 ft. Theresults
from the complex pier-scour equation are considered
conservative, especially given the transition to firmer soils
around the footing noted in the as-builts, but the results from
the coarse-bed pier-scour equation seem like an underestimate
given the exposure of the footing. The channel at Bridge 607
has been degrading incrementally according to soundings,
despite the very coarse bed sediment surrounding the pier, so
the more conservative results are reported.

West Creek Bridge 1490

Total scour at West Creek Bridge 1490 piers ranges from
6.1 to 6.3 ft. There is a persistent debris accumulation, which
increases estimated scour by about 2 ft, and little evidence
of channel armoring. No scour holes have been noted in
inspections or are present in the sounding record; however,
live-bed scour is expected at this site and scour holes would
fill in quickly. Bridge 1490 was not in place during the 1967
flood of record.
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Summary and Conclusions

Fifty-two bridge sites in Alaska were evaluated for
streambed scour, including reach-scale stream stability,
contraction scour, and local scour at piers and abutments.
Most of the sites with unstable streambeds were on active
alluvial fan landforms or were destabilized by in-stream
mining. In these cases, reach-scale instability is not expected
to increase contraction scour, although changing attack
angles and aggradation may increase abutment scour, bank
erosion, or approach road loss. One unstable site, Victor
Creek Bridge 607, is entrenched in an inactive alluvial fan,
and seems to be degrading slightly. Scour estimates are less
reliable for unstable sites because the equations assume static
channel geometry.

Design and check floods were determined for 52 sites
that were modeled with HEC-RAS. The design floods used to
calculate scour for most bridges were the estimated 1-percent
AEP floods, but for two distributary sites where standard flood
frequency techniques were not applicable, alternative design
flood values (maximum pressure flow) were used to calculate
conservative scour numbers. For two regulated streams,
flood frequency estimation methods were adapted to the dam
operation plans in place. Scour also was calculated for the
0.2-percent AEP flood at all but the two maximum pressure
flow sites to show the effects of the check flood. Scour was
calculated for large observed floods at 12 sites.

Contraction scour and abutment scour were calculated for
all 52 bridges, and pier scour was calculated for the 11 bridges
with piers. Vertical contraction occurred during the design
flood or historical floods at four sites and during the check
flood at eight sites, including the two distributary sites. Only
four sites, all of which experienced vertical contraction, had
estimated contraction scour of more than 5 feet (ft), and these
only at the check flood. Sites with contraction scour concerns
include Grouse Creek Bridge 1821, Little Susitna Braid
Bridge 1713, South Fork Anchor River Bridge 1199, and Taiya
River Bridge 309. Estimated total pier scour (pier scour plus
contraction scour) exceeded 5 ft at the design and check floods
at four sites. In one case, Crescent Creek Bridge 1021, the
pier-scour estimates appeared to be excessively conservative.
Sites with the greatest pier-scour concerns include Alaganik
Slough Bridge 395 (where scour holes have been noted in dive
reports), Victor Creek Bridge 607 (where the footing has been
exposed), and West Creek Bridge 1490.

Total scour at abutments exceeded 5 ft during the
design or historical floods at five sites, and during only
the check flood at an additional five sites. Abutment scour
is overestimated where embankment failure would widen
channels, decreasing hydraulic forces on the abutment, and
where low velocity and channel armoring would reduce the
risk. Embankment erosion is common among study sites, with
inspections noting it at 35 of the 52 sites. Riprap typically
is used to protect abutments, but it is noted as missing or
inadequate at 18 of the bridge sites.
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Glossary

Annual Exceedance Probability (AEP)

Flood Annual exceedance probability of a
peak flow is the probability of that flow being
equaled or exceeded in a 1-year period and

is expressed as a decimal fraction less than
1.0. The recurrence interval of a peak flow is
the number of years, on average, in which the
specified flow is expected to be equaled or
exceeded one time. Exceedance probability
and recurrence interval are mathematically
inverse of each other; thus, an exceedance
probability of 0.01 is equivalent to a
recurrence interval of 100 years.

Aggradation General and progressive
buildup of the longitudinal profile of

a channel bed resulting from sediment
deposition.

Check Flood A theoretical flood larger
than the design flood used by engineers to
evaluate hydraulic conditions at a structure.
For bridges over waterways, this usually is
a 0.2-percent AEP flood (also known as a
500-year flood).

Glossary 65

Design Flood A theoretical flood used

by engineers to design a structure. Most
bridges are designed to safely withstand the
hydraulics created by a 1-percent AEP flood
(also known as a 100-year flood).

Low Chord The lowest elevation of the
superstructure of a bridge, usually the bottom
of the girder supporting the deck or the lowest
element of the deck if there is no girder. Also
called “low steel.”.

Superstructure The elements of a bridge,
including deck, railing, and girder, that sit on
top of the piers and abutments
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Appendix 1. Stream Stability Cross Sections

Repeat cross sections at each bridge as measured by Alaska Department of Transportation and Public Facilities and the
U.S. Geological Survey are Microsoft® Excel files and are available for download at https://doi.org/10.3133/sir20175149.
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